Rasterization, Depth Sorting and Culling

Rastrerzation

• How can we determine which pixels to fill?

Reading Material

- These slides
- OH 17-26, OH 65-79 and OH 281-282, by Magnus Bondesson
- You may also read chapter 7 of course book, Angel, "Interactive Computer Graphics – A Top Down Approach"

- Let's start with Line Drawing Algorithms
 - -DDA
 - -Bresenham

Scan Conversion of Line Segments

- Start with line segment in window coordinates with integer values for endpoints
- •Assume implementation has a write_pixel function

$$k = \frac{\Delta y}{\Delta x}$$

$$y = \kappa x + m$$

$$(x_1, y_1)$$

 Δy

DDA Algorithm

- <u>D</u>igital <u>D</u>ifferential <u>A</u>nalyzer
 - –DDA was a mechanical device for numerical solution of differential equations
 - -Line y=kx+m satisfies differential equation dy/dx = k = $\Delta y/\Delta x = y_2-y_1/x_2-x_1$
- Along scan line $\Delta x = 1$

```
y=y1;
For(x=x1; x<=x2,ix++) {
  write_pixel(x, round(y), line_color)
  y+=k;
}
```

Problem

•DDA = for each x plot pixel at closest y

-Problems for steep lines

Using Symmetry

- Use for $1 \ge k \ge 0$
- For k > 1, swap role of x and y

-For each y, plot closest x

- The problem with DDA is that it uses floats which was slow in the old days
- Bresenhams algorithm only uses integers

Bresenham's line drawing algorithm

- The line is drawn between two points (x_0, y_0) ٠
- Slope $k = \frac{(y_1 y_0)}{(x_1 x_0)}$ (y = kx + m)
- Each time we step 1 in x-direction, we should increment y with k. ٠ Otherwise the error in y increases with k.
- If the error surpasses 0.5, the line has become closer to the next y-٠ value, so we add 1 to y simultaneously decreasing the error by 1

```
function line(x0, x1, y0, y1)
   int deltax := abs(x1 - x0)
   int deltay := abs(y1 - y0)
   real error := 0
   real deltaerr := deltay / deltax
   int y := y0
   for x from x0 to x1
       plot(x,y)
      error := error + deltaerr
       if error \geq 0.5
          y := y + 1
          error := error - 1.0
```

See also http://en.wikipedia.org/wiki/Bresenham's line algorithm

Bresenham's line drawing algorithm

- Now, convert algorithm to only using integer computations'
- The trick we use is to multiply all the fractional numbers above by (x_1, x_0) , which enables us to express them as integers.
- The only problem remaining is the constant 0.5—to deal with this, we multiply both sides of the inequality by 2

Old float version:

New integer version:

```
function line(x0, x1, y0, y1)

int deltax := abs(x1 - x0)

int deltay := abs(y1 - y0)

real error := 0

real deltaerr := deltay / deltax

int y := y0

for x from x0 to x1

plot(x,y)

error := error + deltaerr

if error \ge 0.5

y := y + 1

error := error - 1.0
```

```
function line(x0, x1, y0, y1)

int deltax := abs(x1 - x0)

int deltay := abs(y1 - y0)

real error := 0

real deltaerr := deltay

int y := y0

for x from x0 to x1

plot(x,y)

error := error + deltaerr

if 2*error ≥ deltax

y := y + 1

error := error - deltax
```

Ulf Assarsson © 2006

Complete Bresenham's line drawing algorithm

```
function line(x0, x1, y0, y1)
   boolean steep := abs(y1 - y0) > abs(x1 - x0)
   if steep then
       swap(x0, y0)
       swap(x1, y1)
   if x_0 > x_1 then
       swap(x0, x1)
       swap(y0, y1)
   int deltax := x1 - x0
   int deltay := abs(y1 - y0)
   int error := 0
   int ystep
   int y := y0
   if y0 < y1 then ystep := 1 else ystep := -1
   for x from x0 to x1
       if steep then plot(y,x) else plot(x,y)
       error := error + deltay
       if 2 \times \text{error} \ge \text{deltax}
          y := y + ystep
          error := error - deltax
```

The first case is allowing us to draw lines that still slope downwards, but head in the opposite direction. I.e., swapping the initial points if x0 > x1.

To draw lines that go up, we check if y0 >= y1; if so, we step y by -1 instead of 1.

To be able to draw lines with a slope less than one, we take advantage of the fact that a steep line can be reflected across the line y=x to obtain a line with a small slope. The effect is to switch the x and y variables.

Polygon Scan Conversion

- Scan Conversion = Fill
- How to tell inside from outside
 - -Convex easy
 - -Nonsimple difficult
 - -Odd even test
 - Count edge crossings

-Winding number

odd-even fill

Winding Number

Count clockwise encirclements of point

 Alternate definition of inside: inside if winding number ≠ 0

Rasterizing a Triangle

• Fill at end of pipeline

-Convex Polygons only

- –Nonconvex polygons assumed to have been tessellated
- –Shades (colors) have been computed for vertices (Gouraud shading)
- -Combine with z-buffer algorithm
 - March across scan lines interpolating shades
 - Incremental work small

Using Interpolation

 $C_1 C_2 C_3$ specified by glColor or by vertex shading C_4 determined by interpolating between C_1 and C_2 C_5 determined by interpolating between C_2 and C_3 interpolate between C_4 and C_5 along span

Flood Fill

- Fill can be done recursively if we know a seed point located inside (WHITE)
- Scan convert edges into buffer in edge/inside color (BLACK)

```
flood_fill(int x, int y) {
    if(read_pixel(x,y)= = WHITE) {
        write_pixel(x,y,BLACK);
        flood_fill(x-1, y);
        flood_fill(x+1, y);
        flood_fill(x, y+1);
        flood_fill(x, y-1);
```

Scan Line Fill

Set active edges to AB and AC

For
$$y = A.y, A.y-1,...,C.y$$

If $y=B.y \rightarrow$ exchange AB with BC

Compute xstart and xend. Interpolate color, depth, texcoords etc for points (xstart,y) and (xend,y)

For x = xstart, xstart+1, ..., xend

Compute color, depth etc for (x,y) using interpolation.

This is the modern way to rasterize a triangle

Aliasing

Ideal rasterized line should be 1 pixel wide

 Choosing best y for each x (or visa versa) produces aliased raster lines

Antialiasing by Area Averaging

 Color multiple pixels for each x depending on coverage by ideal line

magnified

Polygon Aliasing

- Aliasing problems can be serious for polygons
 - -Jaggedness of edges
 - -Small polygons neglected
 - -Need compositing so color of one polygon does not totally determine color of pixel

All three polygons should contribute to color

Polygon Clipping

- Not as simple as line segment clipping
 - Clipping a line segment yields at most one line segment
 - Clipping a polygon can yield multiple polygons
 - However, clipping a convex polygon can yield at most one other polygon
- One strategy is to replace nonconvex (concave) polygons with a set of triangular polygons (a tessellation)
- Also makes fill easier
- Tessellation code in GLU library

Pipeline Clipping of Polygons

- Three dimensions: add front and back clippers
- Strategy used in SGI Geometry Engine
- Small increase in latency

Bounding Boxes

- Rather than doing clipping on a complex polygon, we can use an axis-aligned bounding box or extent
 - -Smallest rectangle aligned with axes that encloses the polygon
 - -Simple to compute: max and min of x and y

Bounding boxes

Can usually determine accept/reject based only on bounding box

Hidden Surface Removal

 Object-space approach: use pairwise testing between polygons (objects)

partially obscuring

can draw independently

Worst case complexity O(n log n) for n polygons

Painter's Algorithm

 Render polygons a back to front order so that polygons behind others are simply painted over

B behind A as seen by viewer

Fill B then A

•Requires ordering of polygons first

–O(n log n) calculation for ordering–Not every polygon is either in front or behind all other polygons

Hard Cases

Overlap in x, y, z, but one object is fully on one side of the other

cyclic overlap

penetration

z-Buffer Algorithm

- Use a buffer called the z or depth buffer to store the depth of the closest object at each pixel found so far
- As we render each polygon, compare the depth of each pixel to depth in z buffer
- If less, place shade of pixel in color buffer and update z buffer

Polygon-aligned BSP tree

- Used for visibility and occlusion/depth testing (BSP=Binary Space Partitioning)
- Allows exact sorting
 - Each node stores:
 - Polygon (triangle)
 - The splitting plane (defined by the triangle)
 - Front and back subtree

Ulf Assarsson © 2006

Algorithm for BSP trees

Tree SkapaBSP(PolygonLista L) {
 Om L tom returnera ett tomt träd;
 Annars: Välj en polygon P i listan.
 Bilda en lista B med de polygoner som ligger bakom
 P och en annan H med övriga. Returnera ett träd med
 P som rot och SkapaBSP(B) och SkapaBSP(H) som
 vänsterbarn respektive högerbarn.

```
Uppritningsteget (kolla även om trädet tomt! Fick ej plats i koden):
void RitaBSP(Tree t) {
    Om observatören hitom roten i t:
        RitaBSP(t:s vänsterbarn);
        Rita polygonen i t:s rot;
        RitaBSP(t:s högerbarn);
        Annars:
        RitaBSP(t:s högerbarn);
        Rita polygonen i t:s rot;
        RitaBSP(t:s vänsterbarn);
```

Different culling techniques (red objects are skipped)

Bonus Material

Following slides are not part of the course but could be interesting for the curious students

Clipping 2D Line Segments

- Brute force approach: compute intersections with all sides of clipping window
 - -Inefficient: one division per intersection

Cohen-Sutherland Algorithm

- Idea: eliminate as many cases as possible without computing intersections
- Start with four lines that determine the sides of the clipping window

The Cases

Case 1: both endpoints of line segment inside all four lines

-Draw (accept) line segment as is

- Case 2: both endpoints outside all lines and on same side of a line
 - -Discard (reject) the line segment

The Cases

- Case 3: One endpoint inside, one outside –Must do at least one intersection
- Case 4: Both outside
 - -May have part inside
 - -Must do at least one intersection

Defining Outcodes

• For each endpoint, define an outcode

 $b_0 b_1 b_2 b_3$

 $b_0 = 1 \text{ if } y > y_{max}, 0 \text{ otherwise}$ $b_1 = 1 \text{ if } y < y_{min}, 0 \text{ otherwise}$ $b_2 = 1 \text{ if } x > x_{max}, 0 \text{ otherwise}$ $b_3 = 1 \text{ if } x < x_{min}, 0 \text{ otherwise}$

- Outcodes divide space into 9 regions
- Computation of outcode requires at most 4 subtractions

- Consider the 5 cases below
- •AB: outcode(A) = outcode(B) = 0

-Accept line segment

• CD: outcode (C) = 0, outcode(D) \neq 0

-Compute intersection

- –Location of 1 in outcode(D) determines which edge to intersect with
- -Note if there were a segment from A to a point in a region with 2 ones in outcode, we might have to do two interesections

- •EF: outcode(E) logically ANDed with outcode(F) (bitwise) ≠ 0
 - -Both outcodes have a 1 bit in the same place
 - -Line segment is outside of corresponding side of clipping window
 - -reject

- GH and IJ: same outcodes, neither zero but logical AND yields zero
- Shorten line segment by intersecting with one of sides of window
- Compute outcode of intersection (new endpoint of shortened line segment)
- Reexecute algorithm

Efficiency

- In many applications, the clipping window is small relative to the size of the entire data base
 - –Most line segments are outside one or more side of the window and can be eliminated based on their outcodes
- Inefficiency when code has to be reexecuted for line segments that must be shortened in more than one step

Cohen Sutherland in 3D

- Use 6-bit outcodes
- When needed, clip line segment against planes

Liang-Barsky Clipping

Consider the parametric form of a line segment

 $\mathbf{p}(\alpha) = (1 - \alpha)\mathbf{p}_1 + \alpha \mathbf{p}_2 \quad 1 \ge \alpha \ge 0$

• We can distinguish between the cases by looking at the ordering of the values of α where the line determined by the line segment crosses the lines that determine the window

Liang-Barsky Clipping

• In (a): $\alpha_4 > \alpha_3 > \alpha_2 > \alpha_1$ –Intersect right, top, left, bottom: shorten

• In (b):
$$\alpha_4 > \alpha_2 > \alpha_3 > \alpha_1$$

-Intersect right, left, top, bottom: reject

Advantages

- Can accept/reject as easily as with Cohen-Sutherland
- •Using values of α , we do not have to use algorithm recursively as with C-S
- Extends to 3D