
Rasterization, Depth Sorting and
Culling

Rastrerzation

• How can we determine which pixels to fill?

Reading Material
• These slides
• OH 17-26, OH 65-79 and OH 281-282, by
Magnus Bondesson

• You may also read chapter 7 of course book,
Angel, ”Interactive Computer Graphics – A Top Down Approach”

• Let’s start with Line Drawing Algorithms
–DDA
–Bresenham

Scan Conversion of Line
Segments

•Start with line segment in window
coordinates with integer values for
endpoints

•Assume implementation has a
write_pixel function

y = kx + m

x
yk

Δ
Δ

=

DDA Algorithm

• Digital Differential Analyzer
–DDA was a mechanical device for numerical
solution of differential equations

–Line y=kx+ m satisfies differential equation
dy/dx = k = Δy/Δx = y2-y1/x2-x1

• Along scan line Δx = 1
y=y1;
For(x=x1; x<=x2,ix++) {

write_pixel(x, round(y), line_color)
y+=k;

}

Problem

•DDA = for each x plot pixel at closest y
–Problems for steep lines

Using Symmetry

•Use for 1 ≥ k ≥ 0
•For k > 1, swap role of x and y

–For each y, plot closest x

• The problem with DDA is that it uses floats
which was slow in the old days

• Bresenhams algorithm only uses integers

Bresenham’s line drawing
algorithm

• The line is drawn between two points (x0, y0)
and (x1, y1)

• Slope (y = kx + m)

• Each time we step 1 in x-direction, we should increment y with k.
Otherwise the error in y increases with k.

• If the error surpasses 0.5, the line has become closer to the next y-
value, so we add 1 to y simultaneously decreasing the error by 1

Ulf Assarsson © 2006

)(
)(

01

01

xx
yyk

−
−

=

See also
http://en.wikipedia.org/wiki/Bresenham's_line_algorithm

function line(x0, x1, y0, y1)
int deltax := abs(x1 - x0)
int deltay := abs(y1 - y0)
real error := 0
real deltaerr := deltay / deltax
int y := y0
for x from x0 to x1

plot(x,y)
error := error + deltaerr
if error ≥ 0.5

y := y + 1
error := error - 1.0

http://en.wikipedia.org/wiki/Image:Bresenham.png

Bresenham’s line drawing
algorithm

• Now, convert algorithm to only using integer computations’
• The trick we use is to multiply all the fractional numbers above by (x1,

x0), which enables us to express them as integers.
• The only problem remaining is the constant 0.5—to deal with this, we

multiply both sides of the inequality by 2

Ulf Assarsson © 2006

Old float version:

function line(x0, x1, y0, y1)
int deltax := abs(x1 - x0)
int deltay := abs(y1 - y0)
real error := 0
real deltaerr := deltay / deltax
int y := y0
for x from x0 to x1

plot(x,y)
error := error + deltaerr
if error ≥ 0.5

y := y + 1
error := error - 1.0

New integer version:

function line(x0, x1, y0, y1)
int deltax := abs(x1 - x0)
int deltay := abs(y1 - y0)
real error := 0
real deltaerr := deltay
int y := y0
for x from x0 to x1

plot(x,y)
error := error + deltaerr
if 2*error ≥ deltax

y := y + 1
error := error - deltax

http://en.wikipedia.org/wiki/Image:Bresenham.png

The first case is allowing us to draw
lines that still slope downwards, but
head in the opposite direction. I.e.,
swapping the initial points if x0 >
x1.

To draw lines that go up, we check if y0
>= y1; if so, we step y by -1 instead
of 1.

To be able to draw lines with a slope
less than one, we take advantage
of the fact that a steep line can be
reflected across the line y=x to
obtain a line with a small slope. The
effect is to switch the x and y
variables.

function line(x0, x1, y0, y1)
boolean steep := abs(y1 - y0) > abs(x1 - x0)
if steep then

swap(x0, y0)
swap(x1, y1)

if x0 > x1 then
swap(x0, x1)
swap(y0, y1)

int deltax := x1 - x0
int deltay := abs(y1 - y0)
int error := 0
int ystep
int y := y0
if y0 < y1 then ystep := 1 else ystep := -1
for x from x0 to x1

if steep then plot(y,x) else plot(x,y)
error := error + deltay
if 2×error ≥ deltax

y := y + ystep
error := error - deltax

Complete Bresenham’s line
drawing algorithm

Ulf Assarsson © 2006

Polygon Scan Conversion

•Scan Conversion = Fill
•How to tell inside from outside

–Convex easy
–Nonsimple difficult
–Odd even test

• Count edge crossings

–Winding number odd-even fill

Winding Number

•Count clockwise encirclements of point

•Alternate definition of inside: inside if
winding number ≠ 0

winding number = 2

winding number = 1

Rasterizing a Triangle

•Fill at end of pipeline
–Convex Polygons only
–Nonconvex polygons assumed to have been
tessellated

–Shades (colors) have been computed for
vertices (Gouraud shading)

–Combine with z-buffer algorithm
• March across scan lines interpolating
shades

• Incremental work small

Using Interpolation

span

C2

C5

C4

C1

C3

scan line

C1 C2 C3 specified by glColor or by vertex shading
C4 determined by interpolating between C1 and C2
C5 determined by interpolating between C2 and C3
interpolate between C4 and C5 along span

Flood Fill

• Fill can be done recursively if we know a seed
point located inside (WHITE)

• Scan convert edges into buffer in edge/inside
color (BLACK)
flood_fill(int x, int y) {

if(read_pixel(x,y)= = WHITE) {
write_pixel(x,y,BLACK);
flood_fill(x-1, y);
flood_fill(x+1, y);
flood_fill(x, y+1);
flood_fill(x, y-1);

} }

Scan Line Fill
Set active edges to AB and AC
For y = A.y, A.y-1,...,C.y

If y=B.y → exchange AB with
BC
Compute xstart and xend.
Interpolate color, depth, texcoords
etc for points (xstart,y) and
(xend,y)
For x = xstart, xstart+1, ...,xend

Compute color, depth etc for
(x,y) using interpolation.

xend

This is the modern
way to rasterize a
triangle

Aliasing

•Ideal rasterized line should be 1 pixel wide

•Choosing best y for each x (or visa versa)
produces aliased raster lines

Antialiasing by Area Averaging

• Color multiple pixels for each x depending on
coverage by ideal line

original antialiased

magnified

Polygon Aliasing

•Aliasing problems can be serious for
polygons
–Jaggedness of edges
–Small polygons neglected
–Need compositing so color
of one polygon does not
totally determine color of
pixel

All three polygons should contribute to color

Polygon Clipping
• Not as simple as line segment clipping

– Clipping a line segment yields at most one line
segment

– Clipping a polygon can yield multiple polygons
– However, clipping a convex polygon can yield

at most one other polygon

• One strategy is to replace nonconvex (concave) polygons with a set
of triangular polygons (a tessellation)

• Also makes fill easier
• Tessellation code in GLU library

Pipeline Clipping of
Polygons

• Three dimensions: add front and back clippers
• Strategy used in SGI Geometry Engine
• Small increase in latency

Bounding Boxes

• Rather than doing clipping on a complex polygon,
we can use an axis-aligned bounding box or
extent
–Smallest rectangle aligned with axes that
encloses the polygon

–Simple to compute: max and min of x and y

Bounding boxes

Can usually determine accept/reject based
only on bounding box

reject

accept
requires detailed

clipping

Hidden Surface Removal

•Object-space approach: use pairwise
testing between polygons (objects)

•Worst case complexity O(n log n) for n
polygons

partially obscuring can draw independently

Painter’s Algorithm
• Render polygons a back to front order so that polygons

behind others are simply painted over

B behind A as seen by viewer Fill B then A

•Requires ordering of polygons
first

–O(n log n) calculation for ordering
–Not every polygon is either in
front or behind all other polygons

Hard Cases

Overlap in x, y, z,
but one object is fully on
one side of the other

cyclic overlap

penetration

z-Buffer Algorithm

• Use a buffer called the z or depth buffer to store
the depth of the closest object at each pixel found
so far

• As we render each polygon, compare the depth
of each pixel to depth in z buffer

• If less, place shade of pixel in color buffer and
update z buffer

Ulf Assarsson © 2006

PolygonPolygon--aligned aligned BSP BSP treetree
Used for visibility and occlusion/depth
testing (BSP=Binary Space Partitioning)
Allows exact sorting
– Each node stores:

Polygon (triangle)
The splitting plane (defined by the triangle)
Front and back subtree

Ulf Assarsson © 2006

Algorithm for BSP treesAlgorithm for BSP trees
Tree SkapaBSP(PolygonLista L) {

Om L tom returnera ett tomt träd;
Annars: Välj en polygon P i listan.
Bilda en lista B med de polygoner som ligger bakom
P och en annan H med övriga. Returnera ett träd med
P som rot och SkapaBSP(B) och SkapaBSP(H) som
vänsterbarn respektive högerbarn.

}

Uppritningsteget (kolla även om trädet tomt! Fick ej plats i koden):
void RitaBSP(Tree t) {

Om observatören hitom roten i t:
RitaBSP(t:s vänsterbarn);
Rita polygonen i t:s rot;
RitaBSP(t:s högerbarn);

Annars:
RitaBSP(t:s högerbarn);
Rita polygonen i t:s rot;
RitaBSP(t:s vänsterbarn);

}

Tomas Akenine-Mőller © 2002

Different Different culling techniquesculling techniques
(red (red objects objects are are skippedskipped))

view frustum detail

backface

portal occlusion

Bonus Material

Following slides are not part of the
course but could be interesting

for the curious students

Clipping 2D Line Segments

•Brute force approach: compute
intersections with all sides of clipping
window
–Inefficient: one division per intersection

Cohen-Sutherland
Algorithm

•Idea: eliminate as many cases as possible
without computing intersections

•Start with four lines that determine the
sides of the clipping window

x = xmaxx = xmin

y = ymax

y = ymin

The Cases

• Case 1: both endpoints of line segment inside all
four lines

–Draw (accept) line segment as is

• Case 2: both endpoints outside all lines and on
same side of a line

–Discard (reject) the line segment

x = xmaxx = xmin

y = ymax

y = ymin

The Cases

•Case 3: One endpoint inside, one outside
–Must do at least one intersection

•Case 4: Both outside
–May have part inside
–Must do at least one intersection

x = xmaxx = xmin

y = ymax

Defining Outcodes

•For each endpoint, define an outcode

•Outcodes divide space into 9 regions
•Computation of outcode requires at most 4
subtractions

b0b1b2b3

b0 = 1 if y > ymax, 0 otherwise
b1 = 1 if y < ymin, 0 otherwise
b2 = 1 if x > xmax, 0 otherwise
b3 = 1 if x < xmin, 0 otherwise

Using Outcodes

•Consider the 5 cases below
•AB: outcode(A) = outcode(B) = 0

–Accept line segment

Using Outcodes

•CD: outcode (C) = 0, outcode(D) ≠ 0
–Compute intersection
–Location of 1 in outcode(D) determines which
edge to intersect with

–Note if there were a segment from A to a point
in a region with 2 ones in outcode, we might
have to do two interesections

Using Outcodes

•EF: outcode(E) logically ANDed with
outcode(F) (bitwise) ≠ 0
–Both outcodes have a 1 bit in the same place
–Line segment is outside of corresponding side
of clipping window

–reject

Using Outcodes

•GH and IJ: same outcodes, neither zero but
logical AND yields zero

•Shorten line segment by intersecting with
one of sides of window

•Compute outcode of intersection (new
endpoint of shortened line segment)

•Reexecute algorithm

Efficiency

•In many applications, the clipping window is
small relative to the size of the entire data
base
–Most line segments are outside one or more
side of the window and can be eliminated
based on their outcodes

• Inefficiency when code has to be
reexecuted for line segments that must be
shortened in more than one step

Cohen Sutherland in 3D

• Use 6-bit outcodes
• When needed, clip line segment against planes

Liang-Barsky Clipping
• Consider the parametric form of a line segment

• We can distinguish between the cases by looking at the
ordering of the values of α where the line determined
by the line segment crosses the lines that determine the
window

p(α) = (1-α)p1+ αp2 1 ≥ α ≥ 0

p1

p2

Liang-Barsky Clipping

•In (a): α4 > α3 > α2 > α1
–Intersect right, top, left, bottom: shorten

• In (b): α4 > α2 > α3 > α1
–Intersect right, left, top, bottom: reject

Advantages

•Can accept/reject as easily as with Cohen-
Sutherland

•Using values of α, we do not have to use
algorithm recursively as with C-S

•Extends to 3D

	Rasterization, Depth Sorting and Culling
	Rastrerzation
	Reading Material
	Scan Conversion of Line Segments
	DDA Algorithm
	Problem
	Using Symmetry
	Bresenham’s line drawing algorithm
	Bresenham’s line drawing algorithm
	Complete Bresenham’s line drawing algorithm
	Polygon Scan Conversion
	Winding Number
	Rasterizing a Triangle
	Using Interpolation
	Flood Fill
	Scan Line Fill
	Aliasing
	Antialiasing by Area Averaging
	Polygon Aliasing
	Polygon Clipping
	Pipeline Clipping of Polygons
	Bounding Boxes
	Bounding boxes
	Hidden Surface Removal
	Painter’s Algorithm
	Hard Cases
	z-Buffer Algorithm
	Polygon-aligned BSP tree
	Algorithm for BSP trees
	Different culling techniques�(red objects are skipped)
	Bonus Material
	Clipping 2D Line Segments
	Cohen-Sutherland Algorithm
	The Cases
	The Cases
	Defining Outcodes
	Using Outcodes
	Using Outcodes
	Using Outcodes
	Using Outcodes
	Efficiency
	Cohen Sutherland in 3D
	Liang-Barsky Clipping
	Liang-Barsky Clipping
	Advantages

