
Rasterization, Depth Sorting and 
Culling



Rastrerzation

• How can we determine which pixels to fill?



Reading Material
• These slides
• OH 17-26, OH 65-79 and OH 281-282, by 
Magnus Bondesson

• You may also read chapter 7 of course book, 
Angel, ”Interactive Computer Graphics – A Top Down Approach”

• Let’s start with Line Drawing Algorithms
–DDA
–Bresenham



Scan Conversion of Line 
Segments

•Start with line segment in window 
coordinates with integer values for 
endpoints

•Assume implementation has a 
write_pixel function
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DDA Algorithm

• Digital Differential Analyzer
–DDA was a mechanical device for numerical 
solution of differential equations

–Line y=kx+ m satisfies differential equation
dy/dx = k = Δy/Δx = y2-y1/x2-x1

• Along scan line Δx = 1
y=y1;
For(x=x1; x<=x2,ix++) {

write_pixel(x, round(y), line_color)
y+=k;

}



Problem

•DDA = for each x plot pixel at closest y
–Problems for steep lines



Using Symmetry

•Use for 1 ≥ k ≥ 0
•For k > 1, swap role of x and y

–For each y, plot closest x



• The problem with DDA is that it uses floats 
which was slow in the old days

• Bresenhams algorithm only uses integers



Bresenham’s line drawing 
algorithm

• The line is drawn between two points (x0, y0) 
and (x1, y1)

• Slope (y = kx + m)

• Each time we step 1 in x-direction, we should increment y with k. 
Otherwise the error in y increases with k.

• If the error surpasses 0.5, the line has become closer to the next y-
value, so we add 1 to y simultaneously decreasing the error by 1
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See also 
http://en.wikipedia.org/wiki/Bresenham's_line_algorithm

function line(x0, x1, y0, y1) 
int deltax := abs(x1 - x0) 
int deltay := abs(y1 - y0) 
real error := 0 
real deltaerr := deltay / deltax
int y := y0 
for x from x0 to x1 

plot(x,y) 
error := error + deltaerr
if error ≥ 0.5 

y := y + 1 
error := error - 1.0

http://en.wikipedia.org/wiki/Image:Bresenham.png


Bresenham’s line drawing 
algorithm

• Now, convert algorithm to only using integer computations’
• The trick we use is to multiply all the fractional numbers above by (x1, 

x0), which enables us to express them as integers. 
• The only problem remaining is the constant 0.5—to deal with this, we 

multiply both sides of the inequality by 2
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Old float version:

function line(x0, x1, y0, y1) 
int deltax := abs(x1 - x0) 
int deltay := abs(y1 - y0) 
real error := 0 
real deltaerr := deltay / deltax
int y := y0 
for x from x0 to x1 

plot(x,y) 
error := error + deltaerr
if error ≥ 0.5 

y := y + 1 
error := error - 1.0

New integer version:

function line(x0, x1, y0, y1) 
int deltax := abs(x1 - x0) 
int deltay := abs(y1 - y0) 
real error := 0 
real deltaerr := deltay
int y := y0 
for x from x0 to x1 

plot(x,y) 
error := error + deltaerr
if 2*error ≥ deltax

y := y + 1 
error := error - deltax

http://en.wikipedia.org/wiki/Image:Bresenham.png


The first case is allowing us to draw 
lines that still slope downwards, but 
head in the opposite direction. I.e., 
swapping the initial points if x0 > 
x1.

To draw lines that go up, we check if y0 
>= y1; if so, we step y by -1 instead 
of 1.

To be able to draw lines with a slope 
less than one, we take advantage 
of the fact that a steep line can be 
reflected across the line y=x to 
obtain a line with a small slope. The 
effect is to switch the x and y 
variables.

function line(x0, x1, y0, y1) 
boolean steep := abs(y1 - y0) > abs(x1 - x0) 
if steep then

swap(x0, y0) 
swap(x1, y1) 

if x0 > x1 then
swap(x0, x1) 
swap(y0, y1) 

int deltax := x1 - x0 
int deltay := abs(y1 - y0) 
int error := 0 
int ystep
int y := y0 
if y0 < y1 then ystep := 1 else ystep := -1 
for x from x0 to x1 

if steep then plot(y,x) else plot(x,y) 
error := error + deltay
if 2×error ≥ deltax

y := y + ystep
error := error - deltax

Complete Bresenham’s line 
drawing algorithm
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Polygon Scan Conversion

•Scan Conversion = Fill
•How to tell inside from outside

–Convex easy
–Nonsimple difficult
–Odd even test

• Count edge crossings

–Winding number odd-even fill



Winding Number

•Count clockwise encirclements of point

•Alternate definition of inside: inside if 
winding number ≠ 0

winding number = 2

winding number = 1



Rasterizing a Triangle

•Fill at end of pipeline
–Convex Polygons only
–Nonconvex polygons assumed to have been 
tessellated

–Shades (colors) have been computed for 
vertices (Gouraud shading)

–Combine with z-buffer algorithm
• March across scan lines interpolating 
shades

• Incremental work small



Using Interpolation

span

C2

C5

C4

C1

C3

scan line

C1 C2 C3 specified by glColor or by vertex shading
C4 determined by interpolating between C1 and C2
C5 determined by interpolating between C2 and C3
interpolate between C4 and C5 along span 



Flood Fill

• Fill can be done recursively if we know a seed 
point located inside (WHITE)

• Scan convert edges into buffer in edge/inside 
color (BLACK)
flood_fill(int x, int y) {

if(read_pixel(x,y)= = WHITE) {
write_pixel(x,y,BLACK);
flood_fill(x-1, y);
flood_fill(x+1, y);
flood_fill(x, y+1);
flood_fill(x, y-1);

}   }



Scan Line Fill 
Set active edges to AB and AC
For y = A.y, A.y-1,...,C.y

If  y=B.y → exchange AB with 
BC 
Compute xstart and xend. 
Interpolate color, depth, texcoords
etc for points (xstart,y) and 
(xend,y)
For x = xstart, xstart+1, ...,xend

Compute color, depth etc for 
(x,y) using interpolation.

xend

This is the modern 
way to rasterize a 
triangle



Aliasing

•Ideal rasterized line should be 1 pixel wide

•Choosing best y for each x (or visa versa) 
produces aliased raster lines



Antialiasing by Area Averaging

• Color multiple pixels for each x depending on 
coverage by ideal line

original antialiased

magnified



Polygon Aliasing

•Aliasing problems can be serious for 
polygons
–Jaggedness of edges
–Small polygons neglected
–Need compositing so color
of one polygon does not
totally determine color of
pixel

All three polygons should contribute to color



Polygon Clipping
• Not as simple as line segment clipping

– Clipping a line segment yields at most one line 
segment

– Clipping a polygon can yield multiple polygons
– However, clipping a convex polygon can yield 

at most one other polygon

• One strategy is to replace nonconvex (concave) polygons with a set 
of triangular polygons (a tessellation)

• Also makes fill easier
• Tessellation code in GLU library



Pipeline Clipping of 
Polygons

• Three dimensions: add front and back clippers
• Strategy used in SGI Geometry Engine
• Small increase in latency



Bounding Boxes

• Rather than doing clipping on a complex polygon, 
we can use an axis-aligned bounding box or 
extent
–Smallest rectangle aligned with axes that 
encloses the polygon

–Simple to compute: max and min of x and y



Bounding boxes

Can usually determine accept/reject based 
only on bounding box

reject

accept
requires detailed

clipping



Hidden Surface Removal

•Object-space approach: use pairwise
testing between polygons (objects)

•Worst case complexity O(n log n) for n 
polygons

partially obscuring can draw independently



Painter’s Algorithm
• Render polygons a back to front order so that polygons 

behind others are simply painted over

B behind A as seen by viewer Fill B then A

•Requires ordering of polygons 
first 

–O(n log n) calculation for ordering
–Not every polygon is either in 
front or behind all other polygons



Hard Cases

Overlap in x, y, z,
but one object is fully on 
one side of the other

cyclic overlap

penetration



z-Buffer Algorithm

• Use a buffer called the z or depth buffer to store 
the depth of the closest object at each pixel found 
so far

• As we render each polygon, compare the depth 
of each pixel to depth in z buffer

• If less, place shade of pixel in color buffer and 
update z buffer
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PolygonPolygon--aligned aligned BSP BSP treetree
Used for visibility and occlusion/depth 
testing (BSP=Binary Space Partitioning)
Allows exact sorting
– Each node stores:

Polygon (triangle)
The splitting plane (defined by the triangle)
Front and back subtree
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Algorithm for BSP treesAlgorithm for BSP trees
Tree SkapaBSP(PolygonLista L) {

Om L tom returnera ett tomt träd;
Annars: Välj en polygon P i listan.
Bilda en lista B med de polygoner som ligger bakom
P och en annan H med övriga. Returnera ett träd med
P som rot och SkapaBSP(B) och SkapaBSP(H) som
vänsterbarn respektive högerbarn.

}

Uppritningsteget (kolla även om trädet tomt! Fick ej plats i koden):
void RitaBSP(Tree t) {

Om observatören hitom roten i t:
RitaBSP(t:s vänsterbarn);
Rita polygonen i t:s rot;
RitaBSP(t:s högerbarn);

Annars:
RitaBSP(t:s högerbarn); 
Rita polygonen i t:s rot;
RitaBSP(t:s vänsterbarn);

}
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Different Different culling techniquesculling techniques
(red (red objects objects are are skippedskipped))

view frustum detail

backface

portal occlusion



Bonus Material

Following slides are not part of the 
course but could be interesting 

for the curious students 



Clipping 2D Line Segments

•Brute force approach: compute 
intersections with all sides of clipping 
window
–Inefficient: one division per intersection



Cohen-Sutherland 
Algorithm

•Idea: eliminate as many cases as possible 
without computing intersections

•Start with four lines that determine the 
sides of the clipping window

x = xmaxx = xmin

y = ymax

y = ymin



The Cases

• Case 1: both endpoints of line segment inside all 
four lines

–Draw (accept) line segment as is

• Case 2: both endpoints outside all lines and on 
same side of a line

–Discard (reject) the line segment

x = xmaxx = xmin

y = ymax

y = ymin



The Cases

•Case 3: One endpoint inside, one outside
–Must do at least one intersection

•Case 4: Both outside
–May have part inside
–Must do at least one intersection

x = xmaxx = xmin

y = ymax



Defining Outcodes

•For each endpoint, define an outcode

•Outcodes divide space into 9 regions
•Computation of outcode requires at most 4 
subtractions

b0b1b2b3

b0 = 1 if y > ymax, 0 otherwise
b1 = 1 if y < ymin, 0 otherwise
b2 = 1 if x > xmax, 0 otherwise
b3 = 1 if x < xmin, 0 otherwise



Using Outcodes

•Consider the 5 cases below
•AB: outcode(A) = outcode(B) = 0

–Accept line segment



Using Outcodes

•CD: outcode (C) = 0, outcode(D) ≠ 0
–Compute intersection
–Location of 1 in outcode(D) determines which 
edge to intersect with

–Note if there were a segment from A to a point 
in a region with 2 ones in outcode, we might 
have to do two interesections



Using Outcodes

•EF: outcode(E) logically ANDed with 
outcode(F) (bitwise) ≠ 0
–Both outcodes have a 1 bit in the same place
–Line segment is outside of corresponding side 
of clipping window

–reject



Using Outcodes

•GH and IJ: same outcodes, neither zero but 
logical AND yields zero

•Shorten line segment by intersecting with 
one of sides of window

•Compute outcode of intersection (new 
endpoint of shortened line segment)

•Reexecute algorithm



Efficiency

•In many applications, the clipping window is 
small relative to the size of the entire data 
base
–Most line segments are outside one or more 
side of the window and can be eliminated 
based on their outcodes

• Inefficiency when code has to be 
reexecuted for line segments that must be 
shortened in more than one step



Cohen Sutherland in 3D

• Use 6-bit outcodes
• When needed, clip line segment against planes



Liang-Barsky Clipping
• Consider the parametric form of a line segment

• We can distinguish between the cases by looking at the 
ordering of the values of α where the line determined 
by the line segment crosses the lines that determine the 
window

p(α) = (1-α)p1+ αp2 1 ≥ α ≥ 0

p1

p2



Liang-Barsky Clipping

•In (a): α4 > α3 > α2 > α1
–Intersect right, top, left, bottom: shorten

• In (b): α4 > α2 > α3 > α1 
–Intersect right, left, top, bottom: reject



Advantages

•Can accept/reject as easily as with Cohen-
Sutherland

•Using values of α, we do not have to use 
algorithm recursively as with C-S

•Extends to 3D
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